Summary:
We propose a unified moving boundary problem for surface growth by electrochemical and chemical vapor deposition, which is derived from constitutive equations into which stochastic forces are incorporated. We compute the coefficients in the interface equation of motion as functions of phenomenological parameters. The equation features the Kardar-Parisi-Zhang (KPZ) nonlinearity and instabilities which, depending on surface kinetics, can hinder the asymptotic KPZ scaling. Our results account for the universality and the experimental scarcity of KPZ scaling in the growth processes considered.
Keywords: diffusion-limited aggregation, vicinal surfaces, dynamics, model, electrodeposition, fluctuations, equilibrium, interfaces, solidification, imbibition
JCR Impact Factor and WoS quartile: 8,100 - Q1 (2023)
DOI reference: https://doi.org/10.1103/PhysRevLett.87.236103
Published on paper: December 2001.
Published on-line: November 2001.
Citation:
R. Cuerno, M. Castro, Transients due to instabilities hinder Kardar-Parisi-Zhang scaling: A unified derivation for surface growth by electrochemical and chemical vapor deposition. Physical Review Letters. Vol. 87, nº. 23, pp. 236103.1 - 236103.4, December 2001. [Online: November 2001]